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Abstract. We observe a crossover in the temperature dependence of the variable-range-hopping
resistivity in a three-dimensional nickel–silicon film from the MottT −1/4-behaviour to the
soft-gapT −ν -behaviour withν ≈ 0.72. We propose general expressions for describing such
crossovers fromT −1/4-behaviour toT −ν -behaviour for anyν from 1/4 to 1. The theoretical
expressions fit the experimental data well.

1. Introduction

Crossovers in the temperature dependence of the three-dimensional (3D) variable-range-
hopping (VRH) resistanceR(T ) from the Mott behaviour [1]

R(T ) = R0 exp(TM/T )
1/4 TM = βM/kBG0ξ

3 (1)

at high temperatures to the Efros–Shklovskii (ES) behaviour [2, 3]

R(T ) = R0 exp(TES/T )
1/2 TES = βESe2/kBκξ (2)

at low temperatures have been observed in various materials [3–8]. The MottT −1/4-law of
equation (1) was obtained by assuming the localized density of states (DOS) to be constant
near the Fermi level:G(E) ≡ G0 = constant. The EST −1/2-law of equation (2) is a
consequence of the Coulomb gap (CG):

G(E) = α3E
2 with α3 = (3/π)(κ3/e6) (3)

which is opened up in the DOS at the Fermi level as a result of the Coulomb interaction
between localized electrons. Hereξ is the localization length,e is the elementary charge,
and κ is the dielectric constant. The one-particle energyE is measured from the Fermi
level.

Using the effective 3D DOS of the form

G(E) = α3E
2
cgE

2/(E2
cg + E2) (4)

which approaches the Mott constant DOSG0 ≡ α3E
2
cg in the limit of largeE and which

approaches the parabolic DOS of equation (3) in the opposite limit of smallE, we derived
expressions which describe quite well the experimental resistance data for the crossover
from the Mott T −1/4-law to the EST −1/2-law, as observed in amorphous NixSi1−x and
InxOy films [8]. Other theories of the Mott–ES crossover, given by Aharonyet al [9] and
by Meir [10], are also claimed to be in good agreement with experiments. It should be
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noted that all of these theories, aiming to describe the crossover from the Mott law at high
temperatures to the ES law at low temperatures, are based on the concept of the CG of
equation (3).

The CG and its manifestation of the EST −1/2-law were the controversial subjects of
a number of critical reviews [11–13]. A parabolic gap in the DOS at the Fermi level is
undoubtedly recognized in many current computer simulations [2, 3, 14–17]. The ES law of
equation (2) is certainly observed to be followed in various materials [2–11]. Massey and
Lee [18, 19] also reported a direct observation of the parabolic gap in boron-doped silicon
by tunnelling spectroscopy. However, in spite of all of these achievements, the problems
of the CG and of the EST −1/2-law are still under discussion [11–13].

In fact, both computer simulations and experimental measurements have been unable
to quantitatively identify the form of the DOS in the limit of low energies. While all of
the computer simulation data show a parabolic DOS at not very low energies, there is a
considerable quantitative discrepancy between the forms of the DOS at very low energies.
An existence of a gap harder than that of equation (3) had earlier been argued for by Efros
[20] and by Davieset al [14]. Instead of the square of the energy in equation (3), Mobius
et al [15] suggested a power of approximately 2.6, and Sarvestaniet al [16] suggested a
similar power of 2.7. Theoretical arguments incorporating at least some classes of many-
electron correlated transitions always lead to a functional dependence ofG(E) stronger than
the parabolic form of the CG of equation (3) at very low energies [13].

Experimentally, besides the above-mentioned Mott–ES crossover, there are two classes
of crossovers from the MottT −1/4-VRH to theT −ν-VRH with the exponentν considerably
greater than 1/2. In the first class, the exponentν firmly tends to 1 in the limit of low
temperatures [21–23]. Such an activationT −1-behaviour ofR(T ) is generally accepted as
a manifestation of the so-called hard gap (a magnetic gap [21, 22] or non-magnetic gap
[23]) in the DOS at the Fermi level. A typical feature of these data is that the resistance
R(T ) follows the MottT −1/4-law well at first and then the EST −1/2-law over sufficiently
large temperature ranges, before abruptly changing to the activatedT −1-behaviour at very
low temperatures. In the second class of crossovers, there is no clear picture of the three
VRH regimes; the exponent of the resistance smoothly increases from the Mott value of
1/4 to values which, although greater than 1/2, are still considerably smaller than 1. Such
values of the general VRH exponentν at the low-temperature limit should be considered
to be related to soft gaps that are ‘harder’ than the CG at the Fermi level. Very narrow
gaps deduced from VRH data were recently reported by Zabrodskii and Andreev [24] and
by Lee and Massey [19].

In this paper, we present data on the smooth crossover in the temperature dependence
of the VRH resistivity from the 3D Mott behaviour to the soft-gap VRH regime, where
the VRH exponentν is approximately 0.72. We then propose general expressions for the
crossovers fromT −1/4-behaviour toT −ν-behaviour with anyν ranging from 1/4 to 1. The
theoretical expressions describe the data well.

2. Film preparation

Thin amorphous NixSi1−x films were fabricated by co-evaporating Ni and Si using two
electron guns. Seven to eight narrow glass slices of 2.5 mm width were glued onto a
microscope glass slide. These narrow glass segments were employed to avoid shadowing
problems, which are introduced when using a mask. Three microscope glass slides were
placed ‘end to end’ above and between the Ni and Si graphite boats in order to obtain the
differences in Ni content between the samples. Small broken glass pieces covered with
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photoresist were glued between these narrow glass slices, so that EDAX (energy-dispersive
analysis of x-rays) samples would also be available. Typical evaporation rates were 0.7Å s−1

and 11.5Å s−1 for the Ni and Si sources respectively. The evaporations were carried out
in a vacuum of 10−6 mm Hg, and the glass slices were held at room temperature to avoid
crystallization of the amorphous Si. The Ni and Si have purities of 99.9% and of 99.97%
respectively. As a check against contamination, the original graphite boats were replaced
with new boats containing new charges. The data were reproducible from series to series.
None of the series exhibited superconducting properties, which could possibly arise from
boat contamination, particularly from Cu.

The homogeneity of each film is very important near the metal–insulator transition.
We had experienced great difficulty in stabilizing the Si evaporation rate, resulting in very
inhomogeneous films. However, we noticed that the Si evaporation rate would generally
stabilize to a steady value if the Si boat was heated for a least ten minutes. Quartz crystal
monitors, positioned above each graphite boat, monitored the evaporation rates and hence the
thicknesses of the Ni and Si films deposited during the evaporation. The Ni thickness was
then plotted versus the Si thickness; any deviation from a straight line indicated instability in
the evaporation rate of one of the two materials. Thus, any series that exhibited deviations
from a straight-line fit was considered to be inhomogeneous and was discarded. Numerous
evaporations were attempted before an insulating homogeneous series was obtained. We
believe that this series is homogeneous to better than±2.5% throughout the typical thickness
of 900 Å. The film thickness was measured using the Tencor Instruments ‘Alpha-step’ 200
instrument.

The Ni content for the film being investigated is estimated at 5.4 at.% Ni from the EDAX
and Rutherford back-scattering data. Since the metal–insulator transition occurs at around
20 at.%, this film is very strongly insulating. The geometric factorfg, used to convert
resistance to resistivity, is 1.3 × 10−6 cm. Thus, since the room temperature resistance
of this film was 27 600�, its room temperature resistivity would be 0.038 � cm or its
room temperature conductivity would be 27�−1 cm−1. The Keithley 617 electrometer was
used to measure the film resistance. Standard low-temperature liquid helium cryostats were
employed.

3. Experimental results

The VRH exponentν and the characteristic temperatureT0 in the general VRH resistance
expressionR(T ) = R0 exp(T0/T )

ν can be simply determined from theR versusT data
using the well-known technique of Hill [25] and of Zabrodskii and Zinov’eva [26]. These
authors suggested calculating the quantityω(T ) = −d lnR/d lnT = ν(T0/T )

ν from the
resistance dataR(T ), and then making a linear regression fit to the logω(T ) versus logT
data. The slope of the linear fit is equal to the VRH exponentν, and the interceptI of the
linear fit is related to the characteristic temperatureT0 via the expressionT0 = (10I /ν)1/ν .
Thus, one can readily determine whether the resistance data follow the MottT −1/4-law or
the EST −1/2-law or another generalT −ν-VRH dependence.

The resistance data for the amorphous NixSi1−x film are presented in figure 1. As is seen
there, this film does indeed exhibit the 3D Mott VRHR(T ) behaviour at high temperatures,
where the expression

RM(T )/M� = 0.002 83 exp(7310/T )0.27

fits the data very well. Here the Mott characteristic temperatureTM = 7310 K±300 K and
the VRH exponentν = 0.27± 0.02. However, in the liquid helium temperature region all
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Figure 1. Resistance versus temperature for a 900Å amorphous NixSi1−x film having 5.4 at.%
Ni. The high-temperature data can be fitted nicely using a Mott 3D VRH law. The low-
temperature data can be fitted using a general VRH law that has a VRH exponent of 0.72, which
is considerably greater than the ES VRH exponent of 1/2 and considerably smaller than the
hard-gap exponent of 1.

of the data certainly tend to follow the general VRH law lnR(T ) ∝ T −0.72 rather than the
expected ES law lnR(T ) ∝ T −0.5. The expression

RVRH (T )/M� = 0.215 exp(25.2/T )0.72

seems to fit the low-temperature data quite well, as is observed in figure 1. The characteristic
temperatureT0 of this general VRH regime is 25.2 K ± 2 K and the VRH exponent
ν = 0.72± 0.03. Note the smoothness of the crossover between the two limits. From
figure 1 the crossover temperatureTc is also estimated; the value is found to be 9 K± 3 K.

4. Crossover expressions and comparison with the data

We now derive expressions for the general crossover from the 3D MottT −1/4-VRH law to
the generalT −ν-VRH law for anyν in the range 1/4 6 ν < 1. These expressions include
the 3D Mott–ES crossover theory of reference [8] as a special case.

The observed smooth resistivity crossovers should also be reflected in the expressions
for the DOS, encompassing the Mott constant DOS as well as the ‘harder’ soft-gap DOS
whereG(E) ∝ |E|n with n > 2. Following Hamilton [27], the powern of the energy in
the 3D DOS is related to the VRH exponentν in the 3D VRH resistivity by the expression

ν = (n+ 1)/(n+ 4) n > 0. (5)

Therefore, to describe crossovers from the 3D MottT −1/4-VRH to theT −ν-VRH, in analogy
with the 3D Mott–ES crossover theory of reference [8], and with our theory for general
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T −1/3-to-T −ν crossovers in two-dimensional VRH [28, 29], one can choose a ‘universal’
3D DOS in the form

G(E) = αEnsg|E|n/(Ensg + |E|n) (6)

where the powern of the energy can be related to the VRH exponentν using equation (5),
and whereα andEsg depend uponn and are constants for a givenn. For the case of
n = 2, this DOS coincides with the DOS of equation (4), used for describing the Mott–ES
crossover in reference [8].

On the basis of the DOS of equation (6), using the Mott optimizing procedure (see,
for example, references [8, 28, 29]), it is easy to obtain the following expressions for
describing the crossovers from the 3D MottT −1/4-VRH to the general soft-gapT −ν-VRH
with ν ranging from 1/4 to 1:

(Fn(x)−4/3)(dFn(x)/dx) = (9πβMEsg/2kBTM)1/3(Esg/kBT ) (7)

2r/ξ = [61/3/(πβMEsg/kBTM)
1/3](Fn(x))−1/3 (8)

η = 2r/ξ + (Esg/kBT )x (9)

wherex = ε/Esg with ε being the optimum hopping energy, and where

Fn(x) =
∫ x

0

tn dt

1+ tn . (10)

For a given value ofn, by solving equations (7)–(10) we will obtain the exponentη of the
resistivity as a function of the temperatureT . Recall thatR(T ) = R0 expη(T ). For the
particular case ofn = 2, these equations reduce to the corresponding expressions for the
3D Mott–ES crossover of reference [8].

In the high-energy limit,|E| � Esg, the DOS of equation (6) leads toG(E) = αEnsg ≡
G0 = constant. This is the Mott case, whereFn(x) = x, and the solution of equations (7)–
(9) gives the optimum hopping energy:

εM = 3−3/4(πG0ξ
3/6)−1/4(kBT )

3/4 (11)

and the Mott law of equation (1) forR(T ) with βM = (6/π)(31/4+ 3−3/4)4 ≈ 18.1.
In the opposite limit,|E| � Esg, the DOS of equation (6) leads toG(E) = α|E|n.

Consequently,Fn(x) = x(n+1)/(n + 1), and the solution of equations (7)–(9) gives the
optimum hopping energy:

εVRH (n) = 3−3/(n+4)(n+ 1)4/(n+4)(παξ3)−1/(n+4)(kBT )
−3/(n+4) (12)

and the VRH resistance:

R(T ) = R0 exp(T0(n)/T )
(n+1)/(n+4) (13)

with the characteristic VRH temperatureT0(n) given by

T0(n) = [2(n+ 4)(n+4)/(9π(n+ 1)n)]1/(n+1)[β−1
M TM(Esg/kB)

n]1/(n+1). (14)

For the particular case of the parabolic DOS forn = 2, equation (13) takes the form of the
ES law of equation (2). The temperatureT0(n) = T0(2) ≡ TES of equation (14) then gives
TES with βES = 4× 61/3 ≈ 7.27.

Furthermore, if the crossover temperatureTc(n) is defined as the temperature for
which the optimum hopping energies of the two limit regimes are equal to each other,
εM = εVRH (n), then from equations (11) and (12) we have

Tc(n) = 3(n+ 1)16/3n(π/6)1/3(Esg/kB)
4/3(βM/TM)

1/3. (15)
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Note that, in writing the expressions of equation (14) forT0(n) and of equation (15) for
Tc(n), the relationαEnsg = G0 was used.

It should be mentioned that, in fitting these crossover expressions to the experimental
data with a defined Mott characteristic temperatureTM deduced from the data, the
temperatureT ∗ ≡ Esg/kB is the only adjustable fitting parameter used. The value for
the VRH characteristic temperatureT0(n) obtained from equation (14) and the value for
the crossover temperatureTc(n) obtained from equation (15) can then be compared with
corresponding experimental values found from the low-temperature resistance data.

For the experimental data for the amorphous NixSi1−x film, exhibiting a powerν = 0.72,
the power of the energy in the DOS corresponds ton ≈ 6 according to equation (5). In this
case the functionFn(x) of equation (10) has the form

F6(x) = x + 1

4
√

3
ln
x2−√3x + 1

x2+√3x + 1

− [2 tan−1 x + tan−1(2x +
√

3)+ tan−1(2x −
√

3)]/6. (16)

The forms of the functionFn(x) for the other most commonly used values ofn are given
in the appendix.

Figure 2. Comparison of the present crossover expressions with the data of figure 1. Only one
fitting parameter,T ∗ = Esg/kB , is used. The curve forT ∗ = 5.5 fits the experimental points
well.

Using the experimental value of the Mott characteristic temperatureTM = 7310 K and
βM = 18.1 defined above, and treatingT ∗ = Esg/kB as a fitting parameter, we solve
equations (7)–(9), (16) numerically. The prefactorR0 was set toR0 = 0.003 53M�. The
curve obtained usingT ∗ = 5.5 K gives an acceptable fit to the experimental data, as seen
in figure 2. Moreover, using this value ofT ∗, the theoretical expressions of equation (14)
and of equation (15) predict for the characteristic temperatureT0(6) and the crossover
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temperatureTc(6) the valuesT0(6) = 35.2 K andTc(6) = 17.9 K. These theoretical values
should be respectively compared to experimental values of 25.2 K ± 2 K for the charact-
eristic temperature and of 9 K± 3 K for the crossover temperature deduced directly from
the data. In fact, to compare with the present resistance data ofν = 0.72± 0.03, following
the relation given as equation (5), there are two possible approximate (integer) values for
the powern: n = 6 andn = 7. The lower value,n = 6, was chosen here for simplicity.
We believe that using such an approximation for determiningn will unavoidably affect the
agreement between the theory and experiment, especially at low temperatures, as can be
seen in figure 2.

In conclusion, we report experimental data for the smooth crossover from the 3D Mott
T −1/4-VRH to the soft-gapT −ν-VRH with ν ≈ 0.72, measured for an amorphous NixSi1−x
film. The data are quite well described by the simple theory proposed for general crossovers
from the 3D MottT −1/4-VRH to the soft-gapT −ν-VRH for anyν from 1/4 to 1. The theory
is based on the proposed DOS with a soft gap that is harder than the parabolic gap in the ES
single-particle approximation. The significant role of many-particle correlations in transport
processes at very low temperatures is well recognized. However, in spite of recent efforts
[30, 31], this very complicated problem is still far from being understood, and currently
there is no an adequate many-particle theory for VRH at very low temperatures.
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Appendix

The forms of functionFn(x) for some important cases are given below.

(i) For the case ofn = 3, corresponding toν ≈ 0.57:

F3(x) = x − 1

3
ln

1+ x√
1− x + x2

− 1√
3

tan−1 x
√

3

2− x .

(ii) For the case ofn = 4, corresponding toν ≈ 0.63:

F4(x) = x − 1

4
√

2
ln

1+ x√2+ x2

1− x√2+ x2
− 1

2
√

2
tan−1 x

√
2

1− x2
.

(iii) For the case ofn = 5, corresponding toν ≈ 0.68:

F5(x) = x − 1

5
ln(1+ x)+ 1

5

[
cos(π/5) ln(x2− 2x cos(π/5)+ 1)

+ cos(3π/5) ln(x2− 2x cos(3π/5)+ 1)

− 2 sin(π/5) tan−1 x sin(π/5)

1− x cos(π/5)

− 2 sin(3π/5) tan−1 x sin(3π/5)

1− x cos(3π/5)

]
.

For a given form ofFn(x), equations (7)–(9) could easily be solved numerically by, for
example, the standard Newton–Raphson method.
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